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Deep learning has recently attracted a lot of attention with the aim to develop a quick, automatic and accurate
system for image identification and classification. In this work, the focus was on fine-tuning and evaluation of
state-of-the-art deep convolutional neural network for image-based plant disease classification. An empirical
comparison of the deep learning architecture is done. The architectures evaluated include VGG 16, Inception V4,
ResNet with 50, 101 and 152 layers and DenseNets with 121 layers. The data used for the experiment is 38
different classes including diseased and healthy images of leafs of 14 plants from plantVillage. Fast and accurate
models for plant disease identification are desired so that accurate measures can be applied early. Thus, alle-
viating the problem of food security. In our experiment, DenseNets has tendency’s to consistently improve in
accuracy with growing number of epochs, with no signs of overfitting and performance deterioration. Moreover,
DenseNets requires a considerably less number of parameters and reasonable computing time to achieve state-of-
the-art performances. It achieves a testing accuracy score of 99.75% to beat the rest of the architectures. Keras

with Theano backend was used to perform the training of the architectures.

1. Introduction

Deep learning is currently a remarkably active research area in
machine learning and artificial intelligence and has been extensively
and successfully applied in numerous fields. Essentially, it is a class of
machine learning techniques that exploit many layers of non-linear
information processing for supervised or unsupervised feature extrac-
tion and transformation, and for pattern analysis and classification
(Deng and Yu, 2014). Moreover, it has been applied in speech and
Audio Processing, Natural Language Processing (NLP) as well as Com-
puter Vision (Deng and Yu, 2014; He et al., 2016; Huang et al., 2016).
Additionally, it has been widely applied in many sectors of the world
such as Business, agriculture, automotive industry etc. in object de-
tection and image classification (Mohanty et al., 2016; Sladojevic et al.,
2016; Dyrmann et al., 2016; Reyes et al., 2015).

There have been breakthroughs for image classification through the
deep Convolution Neural Network (CNN). Recently, a number of
modifications of CNN Architecture have been proposed with a gradual
increase in the number of layers. Some of the architectures include:
AlexNet (Krizhevsky et al., 2012), GoogLeNet Inception V3 (Szegedy
et al., 2015), Inception V4 (Szegedy et al., 2016), VGG net (Simonyan
and Zisserman, 2015), Microsoft ResNet (He et al., 2016), DenseNets
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(Huang et al., 2016). These deep networks may have difficulties and
challenges such as exploding/vanishing gradients and degradation in
the training process. Most deeper networks suffer from the degradation
problem, where there is a reduction of accuracy when the depth of the
network exceeds maximum. Another challenge is the internal covariate
shift which is the change of the distribution of the input data to a layer
during training. However, a number of optimization techniques have
been proposed to deal with the difficulties and challenges satisfactorily,
including skip connections (He et al., 2016), transfer learning (Pan and
Fellow, 2009), initialization strategies (Mishkin and Matas, 2016),
Optimization strategies (Le et al., 2011), batch Normalization (Szegedy
and Com, 2015) and layer-wise training (Yu et al., 2016).
Advancement in image classification presents an opportunity to
extend the research and application of image processing to the field of
agriculture (Mohanty et al., 2016; Sladojevic et al., 2016; Reyes et al.,
2015). Deep learning models can now be used in the detection and
classification of plant disease using images. A number of different deep
learning approaches are currently used for the task of detecting plant
disease (Mohanty et al., 2016; Sladojevic et al., 2016). Food security is
a major concern with the expected world population growth of more
than 9.7 billion by 2050 (Melorose et al., 2015). Plant disease are a
threat to food security, therefore, accurate methods are needed to
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Fig. 1. A typical Convolution Neural Network (CNN) architecture.

identify the diseases so that appropriate measures can be done.

In this study, an empirical analysis of the state-of-the-art deep
learning models in the task of detecting and classifying plant disease is
done.

The rest of the paper is organized as follows. Section 1.1 looks at
related work done in the field of agriculture. In Section 2 we describe
some of the existing state-of-the-art deep Convolutional methods as
well as the other materials and methodology required to accomplish
this task, Section 3 presents the experimental setup as well as the re-
sults, Section 4, discussion and conclusion.

1.1. Related work

Several approaches are used in the agricultural field including in-
vestigation of plant disease and pests. Deep learning has likewise been
applied as well as image processing techniques. Traditional machine
learning approaches have been extensively adopted in the agricultural
field.

Mohanty et al. (2016) in their work applied Deep learning method
to develop a smartphone-assisted disease diagnosis system. They used
CNN to training their model using datasets of 54,306 images of healthy
and infected plant leaves. CNN was trained to identify 14 crop species
and 26 diseases using images. They evaluated the appropriateness of
CNN for the classification problem of plants/crop and diseases. They
employed two architectures AlexNet [8] and GoogLeNet (Szegedy et al.,
2015). Their model achieved an accuracy of 99.35%. Although their
model generated state-of-the-art result it performed poorly when it was
tested on sets of images taken under different condition.

Similarly, Sladojevic et al. (2016) adopted Deep CNN to the devel-
opment of plant disease recognition model using leaf images. Their
model was able to recognize 14 different types of plant disease from
healthy leaves. Additionally, it was able to distinguish plants from their
surroundings. They achieved an average of 96.3% accuracy on their
experimental analysis.

Equally, deep learning architectures have been used for plants
species classification by Dyrmann et al. (2016). In their work, they
present a method that can recognize weeds and plant species using
colored images. They applied CNN in their work, which was tested on a
total 10,413 images with 22 weeds and crop species. CNN model was
able to achieve a classification accuracy of 86.2%. The network had a
problem classifying some plant species and this is believed to have been
due to a low number of training samples for those species.

Another model, called DeepFruits, used in agriculture for fruit

detection was proposed by Sa et al. (2016). In their work they present a
CNN approach for fruit detection using imagery data. Their goal was to
build an accurate, fast and reliable fruit detection system, which is a
vital element of agricultural for yield estimation and automated har-
vesting. They adopted faster R-CNN (Ren et al., 2015) model and re-
ferred it to multi-modal Faster R-CNN. They trained their model and
was able to achieve an improvement from the previous work of 0.838
precision and recall in the detection of sweet pepper. They retrained to
perform the detection of seven fruits, with the entire process taking four
hours to annotate and train the new model per fruit (Sa et al., 2016).

Machine learning techniques have equally been applied in plant
disease classification. Athanikar and Badar (2016) applied Neural
Network to categorize the potato leaf image as either healthy or dis-
eased. Their results showed that BPNN could effectively detect the
disease spots and classify the particular disease type with an accuracy of
92%.

Additionally, Wang et al. (2012) did an experimental research to
find out a method to realize image recognition of plant disease. Four
kinds of neural networks were used to distinguish wheat stripe rust
from wheat leaf rust and to distinguish grape downy mildew from grape
powdery mildew based on color features, shape features and texture
features extracted from the disease images. The results showed that
identification and diagnosis of the plant disease could be effectively
achieved using Neural networks based on image processing.

Moreover, Samanta et al. (2012) propose image processing metho-
dology to detect scab disease of potato. The images are collected from
different potato field and are processed for enhancement. The image
segmentation is carried out to get target regions (disease spots). Finally,
an analysis of the target regions (disease spots) based on histogram
approach to finding the phase of the disease (Samanta et al., 2012).

2. Materials and methods

Deep learning is currently a very active research field in computer
vision and image classification. A typical Deep CNN consists of an input
and an output or classification layer, as well as multiple hidden layers.
The hidden layers of a CNN typically consist of convolutional layers,
pooling layers, fully connected layers and in some cases Softmax layer.
Most CNN architectures follows the design pattern of LeCun’s et al.,
Lenet-5 architecture (LeCun et al., 1998). A typical CNN architecture
that’s is applied by a number of architectures is shown in Fig. 1.

Thereafter, a number of architectures have been designed. In this
work, an evaluation of the state-of-the-art convolutional neural
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network and fine-tuning it for the task of plant disease identification
and classification using images from PlantVillage is done (Hughes and
Salathe, 2015). PlantsVillage contains Openly and freely dataset with
54,306 images, with 26 diseases for 14 crop plants.

The architectures evaluated include VGG 16, Inception V4, ResNet
with 50, 101 and 152 layers and DenseNets with 121 layers. Fast and
accurate models for plant disease identification are desired so that ac-
curate measures can be applied early.

2.1. Dataset

Deep learning models were evaluated and trained on images of
plant leaves with the aim of classifying and identifying disease on
images that the model has not seen before. Openly and freely dataset
from PlantVillage (Hughes and Salathe, 2015) were used for this study.
PlantVillage have 54,306 images, with 26 diseases for 14 crop plants.
The images are originally colored images of varied sizes. The images are
first resized to 224 x 224 for VGG net, ResNet and DenseNets archi-
tectures. On the other hand, for the Inception V4 architecture the
images are resized to 299 x 299 pixels. Normalization of data is done by
dividing all pixel values by 255 to make them compatible with the
network’s initial values. Furthermore, one hot encoding of target vari-
able or categorical variable is done in order to be used in the models
studied.

The data is first split into two. First is the training data and then test
data with percentage ratio of 80% and 20% respectively. The choice of
the split ratio is based on Mohanty et al. (2016) work. The test set is
used for prediction and evaluation of the models.

The training data is further split into two; training and validation
data with the ration of 80% and 20% respectively to determine if the
model is overfitting. The training set was 34,727 samples, validation set
was 8702 samples and testing set of 10,876 samples.

2.2. State-of-the-art deep learning image classifiers

2.2.1. VGG net model

VGG net is CNN model devised by Simonyan and Zisserman (2015)
for the ILSVRC-2014 challenge. The model attained a 7.5% top-5 error
rate on the validation set which is an outcome that secured them a
second place in the competition. Typically, the model is symbolized by
its modesty as depicted in Simonyan and Zisserman (2015), with only
3 X3 convolutional layers stacked on top of each other in increasing
depth. Max pooling handles reducing the size of the volume (down-
sampling). Additionally, two fully-connected layers each with 4096
nodes and a softmax classifier as shown in their work (Simonyan and
Zisserman, 2015).

Fine-tuning the VGG 16 was done by truncating the original softmax
layer and replace it with our own. The number of our class labels is 38.
Furthermore, a pre-trained model with weights from ImageNet was
used. Finally, the model evaluated based on cross-entropy loss and
accuracy on the test set.

2.2.2. ResNet

He et al. in their paper (He et al., 2015) introduced the ResNet
model which was a basis of ILSVRC 2015 and COCO 2015 classification
challenge. Their model won the 1st place on with error rate of 3.57% in
the ImageNet classification. The inability of multiple non-linear layers
to learn identity mappings and degradation problem motivated the
deep residual learning framework (ResNet).

ResNet is a network-in-network (NIN) architecture that relies on
many stacked residual units. These residual units are the set of building
blocks used to construct the network. A collection of residual unit’s
forms building blocks that leads to the ResNet Architecture (He et al.,
2015). The residual units are composed of convolution, pooling, layers.
The architecture is similar to the VGG net (Simonyan and Zisserman,
2015) consisting of 3 x 3 filters but ResNet, is about 8 times deeper than
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VGG network. This is attributed due to the usage of global average
pooling rather than fully-connected layers. A further update of ResNet
(He et al., 2016) was done to obtain more accuracy by updating the
residual module to use identity mappings.

A ResNet model with 50,101 and 152 layers as in He et al. (2016)
and load it with pre-trained weights from ImageNet was created. Fi-
nally, a customized softmax layer was created for the task of plants
disease identification.

2.2.3. Inception V4

The “Inception” concept was first introduced in the GoogLeNet ar-
chitecture by Szegedy et al. (2015).

The subsequent manifestations of GoogLeNet architecture have
been referred to Inception vN with N referring to the version number.

In the paper by Szegedy et al. (2015), proposed Inception V3 ar-
chitecture which proposes updates to the Inception module to similarly
raise ImageNet classification accuracy.

Szegedy et al. (2016) further improved the architecture to give rise
to Inception V4. This architecture combines the Inception architecture
with residual connections. Their aim being to accelerate the training of
Inception networks.

The Inception module is made-up of a pooling layer and convolution
layers stacked together. The convolutions are of varied sizes of 1x1,
3x3 and 5x5. Another salient feature of the Inception module is the
use of bottleneck layer which is a 1 X1 convolutions. The bottleneck
layer helps in reduction of computation requirements. Additionally,
there is pooling layer is used for dimension reduction within the
module. To merge layers a concatenation filter is required as shown in
Szegedy et al. (2015). Inception v4 replaces the filter concatenation
stage of the Inception architecture with residual connections (Szegedy
et al., 2016).

Fine-tuning of GoogLeNet Inception V4 by using pre-trained weights
from ImageNet was performed. Additionally, truncation and definition
of a new model with Average pooling layer (8 x 8), dropout and softmax
on the top layer was performed.

2.2.4. DenseNet

Huang et al. (2016) in their paper introduced a densely connected
convolutional network architecture. To ensure maximum information
flow between layers in the network, all layers are connected directly
with each other in a feed-forward manner.

For each layer, the feature-maps of all preceding layers are used as
inputs and its own feature-maps are used as inputs into all subsequent
layers. DenseNets alleviates the problem of the vanishing-gradient
problem and has substantially reduced number of parameters (Huang
et al., 2016).

For this task of plant disease identification, DenseNets model with
121 layers as described in Huang et al., 2016 was created. Additionally,
the model was loaded with pre-trained weights from ImageNet. Finally,
another fully-connected model with our own customized softmax on the
top layer was created.

2.3. Fine-tuning the models

Fine-tuning is a concept of transfer learning. Transfer learning is a
machine learning technique, where knowledge gain during training in
one type of problem is used to train in other related task or domain (Pan
and Fellow, 2009). In deep learning, the first few layers are trained to
identify features of the task. During transfer learning, you can remove
last few layers of the trained network and retrain with fresh layers for
target job. Fine-tuned learning experiments require a bit of learning,
but they are still much faster than learning from scratch (Mohanty
et al., 2016). Additionally, they are more accurate compared to models
trained from scratch.

To accelerate learning, the CNN models were fine-tuned to identify
and classify 38 categories of plant disease with pre-trained models on
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Table 1
Accuracy and loss of training, validation and testing and its execution time per epoch.
Model and specifications 10 epochs 30 epochs
Model Layers Params Training Validation Training loss Training Validation Training loss Validation Loss Test Test Loss TIME ~ secs
accuracy%  accuracy% accuracy accuracy% Accuracy
%
Inception V4 41.2M  99.89 99.38 0.0272 99.74 98.02 0.0102 0.0673 98.08 0.0686 4042
VGG net 16 119.6 M 67.02 76.12 0.7725 83.86 81.92 0.5069 0.5997 81.83 0.6055 1051
ResNet 50 23.6M  99.95 99.57 0.0188 99.99 99.67 6.238e-04 0.0159 99.59 0.02177 1583
ResNet 101 425M  99.95 99.53 0.0201 99.99 99.66 4.1611e-04  0.0165 99.66 0.02082 2766
ResNet 152 585M 99.99 97.98 0.2815 100 99.68 2.4844e-04 0.0156 99.59 0.0246 4366
DenseNet 121 71M 99.98 99.71 0.0110 100 99.76 5.6427e-04  0.0107 99.75 0.0159 2165

ImageNet dataset. The ImageNet dataset contains about 1.2 million
images and 1000 class categories. On the other hand, PlantVillage da-
taset is 54,306 images and 38 classes. Thus, the PlantVillage dataset is
insufficient to train deep networks hence the use of the pre-trained
weights from the ImageNet.

Fine-tuning was done on CNN Inception v4, VGG16, ResNet and
DenseNets architecture on PlantVillage dataset without data augmen-
tation.

The models were created and loaded with pre-trained weights from
ImageNet. Additionally, truncation of top layer was performed by de-
fining a new fully-connected softmax layer on the top layer.

Additionally, fine-tuning the model was done using stochastic gra-
dient descent (SGD) algorithm and an initial learning rate of 0.001.

2.4. Batch Normalization

Batch Normalization is a technique that helps to minimize the
problems of Internal Covariate Shift (Szegedy and Com, 2015). When
training Deep Neural Networks, the output of one layer is the input of
the next layers. During training of the network, the distribution of the
input data to the layers vary significantly over time as the parameters of
the previous layers change. This slows down the training by requiring
lower learning rates and careful parameter initialization and makes it
notoriously hard to train models with saturating nonlinearities.

Batch Normalization helps to minimize the challenges posed by
internal Covariate Shift. The input of each layer is normalized by ad-
justing the mean and variance of the input across one minibatch. Batch
Normalization allows the use of much higher learning rates and less
worry about initialization, and in some cases eliminates the need for
Dropout. Batch normalization potentially helps in two ways: faster
learning and higher overall accuracy (Szegedy and Com, 2015). Batch
normalization and ReLU activation function are applied in all the ex-
periments.

2.5. Hardware and software

The experiments were performed on dual Graphics Processing Unit
(GPU) mode. The specifications of the machine used: the memory of
16 GB, processor clock 33 MHz, Graphics of Tesla K40c, and the oper-
ating system used is Ubuntu 16.04 64 bits.

Python: Python is considered a reasonably comfortable for data
science. Many choose python due to its popularity and community
support for data science. Raising the community is the primary reason
for open sourcing. Consequently, Python supports a number of Deep
Learning frameworks.

Keras: Keras is a simple to use neural network library built on top of
Theano or TensorFlow that allows developers to prototype ideas very
quickly (Chetlur et al., 2014). Keras provides most of the building
blocks needed to build reasonably sophisticated deep learning models.
It also comes with a great documentation and tons of online resources.
It works with python. This framework was used along with the set of
weights learned on a very large dataset, ImageNet (https://github.com/

liuzhuang13/DenseNet.,; https://keras.io/).

CuDNN: CuDNN is a library for CUDA, developed by NVIDIA, which
provides highly tuned implementations of primitives for deep neural
networks. CuDNN make deep nets run faster and sometimes using less
memory (Chetlur et al., 2014). Thus, CuDNN was configured to work
with Theano Backend.

CNMeM: CNMeM is a simple library, developed by NVIDIA, which
helps deep learning frameworks in managing of CUDA memory.
CNMeM is already integrated into Theano.

OpenCV- OpenCV is a free library for both academic and com-
mercial use that supports and Windows, Linux, Mac OS, iOS and
Android and C+ +, C, Python and Java interfaces. OpenCV was de-
signed for computational efficiency and with a strong focus on real-time
applications. Written in optimized C/C+ +, the library can take ad-
vantage of multi-core processing (http://opencv.org).

3. Results
3.1. Experiments

3.1.1. Experiment setup

The baseline system used in our evaluation is a workstation GPU
Tesla K40c. OpenCV, Keras, Theano, CNMeM and CuDNN library are
used for software implementations.

3.1.2. Training

For every experiment, accuracy metric and categorical cross-en-
tropy loss (loss) are used for evaluation of the models. The perfor-
mances are graphically depicted for each model with accuracy and loss.
An overall loss score and accuracy based on the test dataset are com-
puted and used to determine the performance of the models. The results
are presented in Table 1. Each of the experiment runs for a total of 10
epochs and 30 epochs. Where the epoch is the number of the training
iterations. The choice of the 10 and 30 epoch was done to check which
model was able to converge with few iterations and which one suffers
from the degradation problem.

The hyper-parameters were standardized on all the networks. All
the network models are trained using Stochastic Gradient Descent
(SGD), SGD runs faster and converges easily (He et al., 2016). Because
of GPU memory constraints, we trained the networks with the Batch
size of 16. The learning rate was set to 0.001 for all networks. We used
the weight Decay le-6 and a Nesterov momentum of 0.9. Batch Nor-
malization (https://keras.io/) technique and ReLU activation function
(Glorot et al., 2011) are applied in all the experiments. No data aug-
mentation was done for all the networks.

3.1.3. Results of the experiments

In this study, an assessment of the appropriateness of state-of-the-art
deep convolutional neural network for the task of plant disease iden-
tification using images was done. Our focus was fine-tuning VGG 16,
Inception V4, ResNet with 50,101 and 152 layers and DenseNets with
121 layers.
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Fig. 2. Inception V4, left is accuracy of the model and right depicts the Model Loss.
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Fig. 3. VGG16 Net, left is accuracy of the model and right depicts the model Loss.

Training and fine-tuning the deep learning architectures is carried
out as specified in Section 2.1. The results of the experiments are pre-
sented in Figs. 2-7. Each figure depicts the accuracy and the entropy
log-loss of each architecture

After fine-tuning, the models using 10 epochs all the models except
VGG 16 had accuracy above 90%. Furthermore, even after the 30th
training iteration, high accuracy results were obtained with sub-
stantially reduced log-loss.

ResNet and DenseNets models consistently perform better than VGG
16 and Inception V4. Additionally, they converge easily as perceived in
Figs. 4-7.

The deeper models had better test score as detailed in Table 1.

ResNet 50 and ResNet 101 performs adequately with fewer itera-
tions. On the other hand, ResNet 152 performs poorly with fewer
iterations as demonstrated in Figs. 4 and 5. However, ResNet 152 in-
creases its accuracy and reduce its log-loss with increased number of

iterations as depicted in Fig. 6.

Overall, DenseNets 121 performed well with the highest accuracy
and lowest log-loss while VGG 16 performed poorly with the least ac-
curacy and highest log-loss.

4. Discussion

Deep learning models have dominated in the field of machine
learning for image processing. Advancement in deep learning and
image processing presents an opportunity to extend the research and
application to detection and classification of plant disease using images.
Fast and accurate models for plant disease identification are desired so
that accurate measures can be applied early. Thus, mitigating the issue
of food security.

Recent work in deep learning has demonstrated that deeper models
are more accurate and efficient to train (Huang et al., 2016). However,



E.C. Too et al.

ResNets 50 Accuracy Performance
100

99

98

97

Accuracy%

96

123456 7 8 9101112131415161718 192021 22 2324252627 2829 30

Epoch
—TraiNINg ACCUracy  ==\Validation Accuracy

Computers and Electronics in Agriculture xxx (XxxXx) XXX—-XXX

ResNets 50 Loss Performance

0.25

0.2

0.15

Loss

0.1

0.05

123456 7 89 101112131415161718 19 2021 2223 24 2526 27 28 29 30
Epoch
e TrRININE LOSS e ValidatioN Loss

Fig. 4. ResNet with 50 layers, left is Accuracy of the model and Right depicts the model Loss.
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Fig. 5. ResNet with 101 layers, left is accuracy of the model and Right depicts the model Loss.

as the depth increases other challenges emerge such as vanishing gra-
dients, internal covariate shifts and degradation problem. Additionally,
there has been computational cost that emanate from training deep
models. Strategies to deal with some of these problems have been
proposed for different architectures. These including skip connections
(He et al., 2016), transfer learning (Pan and Fellow, 2009), initializa-
tion strategies (Mishkin and Matas, 2016), optimization methods (Le
et al., 2011) and Batch Normalization (Szegedy and Com, 2015).
From literature a number of image processing (Samanta et al.,
2012), machine learning (Athanikar and Badar, 2016; Wang et al.,
2012) and deep learning (Mohanty et al., 2016; Sladojevic et al., 2016)
models have been to applied to area of disease identification using
images. With deep learning showing outstanding performance. Transfer
learning concept has been adopted (Mohanty et al., 2016) and de-
monstrates that it aids in boosting accuracy as well as reducing the

execution time.

An extension of research by analyzing state-of-the-art deep learning
models in the plant disease identification is carried out. Fine-tune and
comparative evaluation of VGG net, Inception V4, ResNet (50,101 and
152 layers) and DenseNets is done. These architectures have been
successfully applied in different tasks such as ImageNet, Cifar 10 and
Cifar 100 classification.

In contrast, DenseNets, ResNet and Inception V4 performed rela-
tively well compared to VGG net as illustrated in the test score on
Table 1. This proof that deeper network performs well than shallow
networks. Equally, the number of parameters on the deeper networks
(DenseNets, ResNet and Inception V4) are reduced compared to VGG
net. With DenseNets having the least number of parameters. DenseNets
121 has considerably reduced number of parameters even though its
similar to ResNet. DenseNets is 8 times less than ResNet 152 and 16
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Fig. 6. ResNet with 152 layers, left is accuracy of the model and Right depicts the model Loss.
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Fig. 7. DenseNet with 121 layers, left is accuracy of the model and Right depicts the model Loss.

times less than VGG net. Therefore, it’s easier to train DenseNets
compared to the rest of the architectures studied. ResNet on the other
hand performs well although it takes a lengthy time to train compared
to DenseNets. Similarly, Inception V4 is computationally expensive in
terms of running time. Inception V4 and VGG net have another chal-
lenge regarding the convergence. DenseNets and ResNet architecture
demonstrate that extremely deep networks can be more accurate, in
addition to requiring less weights.

4.1. Conclusion

In this task, fine-tuning and evaluation of state-of-the-art deep
convolutional neural network for image-based plant disease classifica-
tion is performed. The architectures evaluated include VGG 16,
Inception V4, ResNet with 50,101 and 152 layers and DenseNets with
121 layers. From the experiment, DenseNets has a tendency to yield

coherent increment in accuracy with rising number of epochs, with no
manifestations of performance deterioration and overfitting. In addi-
tion, DenseNets requires significantly less number parameters and
sensible computing time to accomplish best in classification exhibitions.
DenseNets obtains a test accuracy score of 99.75% for the 30th epoch,
beating the rest of the architectures. DenseNets is, therefore, a good
architecture for the task of plants image-based disease identification.
Even though the performance of the architecture is good, further re-
search needs to be done to improve on the computational time.
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online version, at http://dx.doi.org/10.1016/j.compag.2018.03.032.

References

Athanikar, G., Badar, M.P., 2016. Potato Leaf Diseases Detection and Classification
System, 5(2), 76-88.

Chetlur, S. et al., 2014. cuDNN: Efficient Primitives for Deep Learning, pp. 1-9.

Deng, L., Yu, D., 2014. Deep Learning: Methods and Applications. Foundations and
Trends® in Signal Processing. pp. 3—-4.

Dyrmann, M., Karstoft, H., Midtiby, H.S., 2016. Plant species classification using deep
convolutional neural network. Biosyst. Eng. 151 (2005), 72-80.

Glorot, X., Bordes, A., Bengio, Y., 2011. Deep sparse rectifier neural networks. AISTATS
’11 Proc. 14th Int. Conf. Artif. Intell. Stat., vol. 15, pp. 315-323, 2011.

He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep Residual Learning for Image Recognition,
Arxiv.Org, vol. 7, no. 3, pp. 171-180.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Identity Mappings in Deep Residual Networks.
pp. 1-15.

http://opencv.org/.

https://github.com/liuzhuang13/DenseNet.

https://keras.io/.

Huang, G., Weinberger, K.Q., Van Der Maaten, L., 2016. Densely Connected
Convolutional Networks.

Hughes, D., Salathe, Marcel, 2015. An open access repository of images on plant health to
enable the development of mobile disease diagnostics, pp. 1-13.

Krizhevsky, A., Sutskever, 1., Geoffrey, E.H., 2012. ImageNet classification with deep
convolutional neural networks. Adv. Neural Inf. Process. Syst. 25 (NIPS2012), 1-9.
http://dx.doi.org/10.1109/5.726791.

Le, Q.V., Coates, A., Prochnow, B., Ng, A.Y., 2011. On Optimization Methods for Deep

Computers and Electronics in Agriculture xxx (XxxXx) XXX—-XXX

Learning,. In: Proc. 28th Int. Conf. Mach. Learn., pp. 265-272.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-Based Learning Applied to
Document Recognition. Proc. Of the IEEE.

Melorose, J., Perroy, R., Careas, S., 2015. World population prospects, United Nations
1(6042), 587-592.

Mishkin, D., Matas, J., 2016. All you need is a good init, pp. 1-13.

Mohanty, S.P., Hughes, D.P., Salathé, M., 2016. Using deep learning for image-based
plant disease detection. Front. Plant Sci. 7 (September), 1-7.

Pan, S.J., Fellow, Q.Y., 2009. A Survey on Transfer Learning, pp. 1-15.

Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks, Nips, pp. 1-10.

Reyes, A.K., Caicedo, J.C., Camargo, J.E., 2015. Fine-tuning deep convolutional networks
for plant recognition. CEUR Workshop Proc. 1391.

Sa, L, Ge, Z., Dayoub, F., Upcroft, B., Perez, T., Mccool, C., 2016. DeepFruits : A Fruit
Detection System Using Deep Neural Networks.

Samanta, D., Chaudhury, P.P., Ghosh, A., 2012. Scab Diseases Detection of Potato using
Image Processing 3(April), 109-113.

Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale
image recognition. Int. Conf. Learn. Represent. 1-14.

Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., Stefanovic, D., 2016. Deep neural
networks based recognition of plant diseases by leaf image classification. Comput.
Intell. Neurosci. 2016 (June).

Szegedy, C., Com, S.G., 2015. Batch Normalization : Accelerating Deep Network Training
by Reducing Internal Covariate Shift, vol. 37.

Szegedy, C., Vanhoucke, V., Shlens, J., 2015. Rethinking the Inception Architecture for
Computer Vision.

Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A., 2016. Inception-v4, Inception-ResNet and
the Impact of Residual Connections on Learning.

Wang, H., Li, G., Ma, Z., Li, X., 2012. Application of neural networks to image recognition
of plant diseases. 2012 Int. Conf. Syst. Informatics, ICSAI 2012, no. Icsai, pp.
2159-2164.

Yu, D., et al., Deep convolutional neural networks with layer-wise context expansion and
attention. In: Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH, vol.
08-12-Sept, 2016, pp. 17-21.


http://dx.doi.org/10.1016/j.compag.2018.03.032
http://refhub.elsevier.com/S0168-1699(17)31330-3/h0025
http://refhub.elsevier.com/S0168-1699(17)31330-3/h0025
http://opencv.org/
https://github.com/liuzhuang13/DenseNet
https://keras.io/
http://dx.doi.org/10.1109/5.726791
http://refhub.elsevier.com/S0168-1699(17)31330-3/h0095
http://refhub.elsevier.com/S0168-1699(17)31330-3/h0095
http://refhub.elsevier.com/S0168-1699(17)31330-3/h0110
http://refhub.elsevier.com/S0168-1699(17)31330-3/h0110
http://refhub.elsevier.com/S0168-1699(17)31330-3/h0125
http://refhub.elsevier.com/S0168-1699(17)31330-3/h0125
http://refhub.elsevier.com/S0168-1699(17)31330-3/h0130
http://refhub.elsevier.com/S0168-1699(17)31330-3/h0130
http://refhub.elsevier.com/S0168-1699(17)31330-3/h0130

	A comparative study of fine-tuning deep learning models for plant disease identification
	Introduction
	Related work

	Materials and methods
	Dataset
	State-of-the-art deep learning image classifiers
	VGG net model
	ResNet
	Inception V4
	DenseNet

	Fine-tuning the models
	Batch Normalization
	Hardware and software

	Results
	Experiments
	Experiment setup
	Training
	Results of the experiments


	Discussion
	Conclusion

	Funding
	Supplementary material
	References




